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Abstract

Understanding the time-dependent changes of biomarkers related to Alzheimer’s disease (AD) is a 

key to assessing disease progression and to measuring the outcomes of disease-modifying 

therapies. In this paper, we validate an Alzheimer’s disease progression score model which uses 

multiple biomarkers to quantify the AD progression of subjects following three assumptions: (1) 

there is a unique disease progression for all subjects, (2) each subject has a different age of onset 

and rate of progression, and (3) each biomarker is sigmoidal as a function of disease progression. 

Fitting the parameters of this model is a challenging problem which we approach using an 

alternating least squares optimization algorithm. In order to validate this optimization scheme 

under realistic conditions, we use the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

cohort. With the help of Monte Carlo simulations, we show that most of the global parameters of 

the model are tightly estimated, thus enabling an ordering of the biomarkers that fit the model 

well, ordered as: the Rey auditory verbal learning test with 30 minutes delay, the sum of the two 
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lateral hippocampal volumes divided by the intra-cranial volume, followed by (the clinical 

dementia rating sum of boxes score and the mini mental state examination score) in no particular 

order and lastly the Alzheimer’s disease assessment scale-cognitive subscale.
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1. Introduction

The ability to precisely identify the stage of disease, predict the rate of disease progression, 

and accurately measure the outcomes of potential therapies [8, 11] is critical to the 

successful management of Alzheimer’s disease (AD). The classical characterization of late-

onset Alzheimer’s disease progression is a time-ordered succession of three stages: normal 

(N), mild cognitive impairment (MCI), and AD. Physical measurements of disease 

progression, i.e., biomarkers, are used to classify patients into these three stages, but it has 

been challenging to reliably define finer stages of the disease. In [5], we have proposed a 

method for computing an Alzheimer’s Disease Progression Score (ADPS) by 

computationally combining seven biomarkers of AD. A bi-product of this study was a 

temporal ordering of the biomarkers. Experiments conducted on the combined AD 

Neuroimaging Initiative (ADNI) I, GO, and II datasets provided an ordering of the 

biomarkers which was consistent with [4] except for a cognitive test, the Rey Auditory 

Verbal Learning Test, 30 minutes recall (RAVLT30), which was found to become dynamic 

very early in the development of the disease. The statistical validation of this ordering was 

performed by resampling from the collection of subjects. Since the statistical model used is a 

regression, it can be argued that an additional validation would be obtained by sampling 

from the residuals.

In this paper we validate the methodology presented in [5] using the technique of sampling 

from the residuals. We adopt the model-based bootstrap that is widely employed in 

regression analysis (see, [14, 7], and references therein) and time series ([1, 12]) and has 

become increasingly popular for inference of longitudinal processes ([15, 10]). The benefit 

of the proposed approach is that it enables us to quantify estimation uncertainty and impute 

missing values [3]. The rest of this paper is organized as follows: in Section 2.1 we present 

the statistical model. The optimization algorithm used for fitting the parameters is presented 

in Section 2.2. The ADNI dataset and the selection of the biomarkers is presented in 

Sections 2.3 and 2.4 respectively. Section 2.5 motivates and then describes the sampling 

method. The results are presented in Section 3 followed by a discussion of our findings in 

Section 4. Concluding remarks are presented in Section 5.

2. Method

Our research first describes then evaluates an algorithm for computing an Alzheimer’s 

disease progression score (ADPS), which assigns a time dependent score to each subject.
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2.1. Statistical Model

The method we use is based on three assumptions:

1. All subjects follow a common disease progression but differ in their age of onset 

and rate of progression;

2. As the disease progresses, each biomarker changes continuously and monotonically 

following a sigmoid shaped curve; and

3. In the longitudinal period over which biomarkers are observed, the rate of 

progression for a given subject is constant.

The proposed computation positions the longitudinal measurements of each subject on a 

common disease progression scale. Since it is considered to be a common scale, all subjects 

are expected to undergo the same biological and cognitive changes when they reach the 

same value (or score) on this scale. Thus, individuals are generally mapped to different 

positions on this scale and they progress at different rates regardless of their age of disease 

onset.

The age t of subject i is to be transformed into the ADPS si as

(1)

after estimation of the subject dependent parameters αi and βi, which indicate rate and onset 

of disease, respectively. A linear transformation is justified because the interval over which 

longitudinal observations of the ADNI subjects occur is short relative to the overall disease 

duration. Our objective is to compute a score for all I subjects in the ADNI database by 

estimating α = (α1, …, αI) and β = (β1, …, βI). The subject dependent parameters α and β 

are deliberately modeled as fixed effects, not random effects, as the ADPS may ultimately 

be used as a covariate.

The longitudinal dynamic of each biomarker is assumed to be the same across the 

population and can be represented as a sigmoidal function f of ADPS s. Using θk = (ak, bk, 

ck, dk) to represent the vector of sigmoid function parameters for the k-th biomarker, we can 

write the form of the the k-th biomarker as

(2)

The minimum and maximum values of the sigmoid function are dk and dk + ak, and the 

value of s for which the biomarker is the most dynamic, having maximum slope akbk/4 

corresponding to its inflection point, is ck. Sigmoids offer a parsimonious parametric model 

which is often a better fit than linear models for biomarkers [2, 13]. They are also similar in 

form to the conceptual evolution of biomarkers envisioned by Jack et al. [4] (Fig. 1). A 

comparison of different shapes (linear, sigmoid, quadratic, splines) of various biomarkers as 

function of ADAS-COG is presented in [9]
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The ADNI database contains measurements yijk of biomarker k for subject i at visit j. Since 

there are irregularities in data collection, we use I to denote the set of triples (i, j, k) for 

which measurements are available. Each biomarker observation can be written as

(3)

where tij is the age of subject i at visit j. Observation noise in each biomarker is modeled for 

simplicity by the product of εijk, which are independent random variables with zero mean 

and unit variance, and σk, which is the standard deviation of biomarker k. The collection of 

standard deviations σ = (σ1, …, σK) comprise another unknown that must be estimated.

The unknowns in this problem are α, β, θ, and σ and the least squares problem associated 

with the observation model in (3) is

(4)

Necessary conditions on the available data I for guaranteeing the identifiability of the 

parameters are as follows:

1. For each biomarker, there is at least one subject i with αi ≠ 0 and with at least four 

distinct time-points in I.

2. For each subject, there is at least one biomarker which is available at two time 

points in I

In practice, a sufficient number of data points per parameter is needed in order to obtain 

tight estimators. Examining first the case with no missing data, the number of equations in 

(3) is IJK where I is the number of subjects, J is the number of time-points and K is the 

number of biomarkers. The number of parameters is 2I + 5K, counting two parameters per 

subject, and five per biomarker (four for the sigmoid and one for the standard deviation). In 

applications where I is large compared to K, the number of data points per parameter is close 

to JK/2. Note that longitudinal data (J > 1) is critical for such modeling. However, a small 

number J of time-points together with a small number K of biomarkers is in principle 

acceptable. The subset of ADNI presented in Section 2.4 has numerous missing data points. 

We will use simulations to study the quality of the estimation of the parameter c for each 

biomarker. This parameter is critical for ordering the biomarkers.

2.2. Parameter Fitting

Parameter fitting is performed using alternating least squares wherein the parameters θ, α, β, 

and σ are optimized iteratively starting from the values computed in the previous step. The 

details of the fitting algorithm are shown in Alg. 1. The initial values (Line 1) are α(0) ≡ 1 

and β(0) ≡ 0. Because of the additive form of (4), optimization over θ is done serially over 

each of the K biomarkers while keeping (α and β fixed). Similarly, optimization over (α, β) 

is performed serially over each of the I subjects while keeping θ fixed. Fitting of θ, α, and β 

requires optimization of continuously differentiable nonconvex functions, which is carried 

Jedynak et al. Page 4

Neurobiol Aging. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



out using the Levenberg-Marquardt algorithm [6] (Lines 4 and 8). Ik (line 4) is the number 

of subjects and visits available for biomarker k. The denominator in the equation of Line 5 is 

the number of degrees of freedom. A canonical way to parameterize sigmoid functions is to 

constrain the parameter bk in (2) to be non-negative. This is enforced with the loop over 

biomarkers (Lines 12–16), which does not modify the objective function in (4). Our 

experiments confirm that successful fitting is accomplished in 30 iterations; i.e., L = 30 on 

Line 2.

The units of ADPS are arbitrarily defined, which implies that we must choose two specific 

numerical values in order to fully specify the ADPS. This situation is analogous to the 

selection of a scale for temperature, where the numerical values of the freezing and boiling 

points of water determine the scale. In our experiments we chose to fix the ADPS such that 

after computation over the entire population, the computed ADPS for all visits of subjects 

with normal clinical assessment had a trimmed mean value (mN) and a trimmed standard 

deviation (σN) which are set respectively to zero and one. This is accomplished in Lines 17–

19.

2.3. The Alzheimer’s Disease Neuroimaging Initiative cohort

Data used in the preparation of this article were obtained from the Alzheimers Disease 

Neuroimaging Initiative (ADNI) database (http://adni.loni.ucla.edu/). The ADNI was 

launched in 2003 by the National Institute on Aging (NIA), the National Institute of 

Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration 

(FDA), private pharmaceutical companies and non-profit organizations, as a $60 million, 5-

year public private partnership. The primary goal of ADNI has been to test whether serial 

magnetic resonance imaging (MRI), positron emission tomography (PET), other biological 

markers, and clinical and neuropsychological assessment can be combined to measure the 

progression of mild cognitive impairment (MCI) and early Alzheimers disease (AD). 

Determination of sensitive and specific markers of very early AD progression is intended to 

aid researchers and clinicians to develop new treatments and monitor their effectiveness, as 

well as lessen the time and cost of clinical trials. The Principal Investigator of this initiative 

is Michael W. Weiner, MD, VA Medical Center and University of California San Francisco. 

ADNI is the result of efforts of many coinvestigators from a broad range of academic 

institutions and private corporations, and subjects have been recruited from over 50 sites 

across the U.S. and Canada. The initial goal of ADNI was to recruit 800 adults, ages 55 to 

90, to participate in the research, approximately 200 cognitively normal older individuals to 

be followed for 3 years, 400 people with MCI to be followed for 3 years and 200 people 

with early AD to be followed for 2 years. For up-to-date information, see www.adni-

info.org.

2.4. Biomarker selection

The available data in ADNI are measurements in elderly humans of multiple biomarkers 

associated with Alzheimer’s disease. Hundreds of subjects, categorized into N, MCI, and 

AD, were examined at baseline and with repeat visits every 6 to 12 months for a period of 

up to 60 months.
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The following seven biomarkers were selected for use based on their relevance in assessing 

the progression of AD.

1. the sum of the two lateral hippocampal volumes1 normalized by dividing by the 

intra-cranial volume (HIPPO);

2. the Alzheimer’s Disease Assessment Scale-cognitive subscale (ADAS);

3. the Mini-Mental State Examination score (MMSE);

4. the Aβ42 protein level measured from the cerebrospinal fluid (ABETA);

5. the Tau protein level measured from the cerebrospinal fluid (TAU);

6. the Clinical Dementia Rating Sum of Boxes score (CDRSB);

7. the Rey Auditory Verbal Learning Test, 30 minutes recall (RAVLT30)

A detailed description of the ADNI population, protocols and biomarkers is provided at 

http://adni.loni.ucla.edu/.

The ADNI, ADNI GO, and ADNI 2 biomarker datasets were downloaded from the ADNI 

server (http://adni.loni.ucla.edu/) on November 24, 2011. All visits without date information 

were removed. Subjects not having at least two measurements for at least one of the seven 

biomarkers were also removed. Subjects not having at least two measurements of the 

HIPPO biomarker were removed. The total number of subjects remaining was 687, where 

389 were male, 275 were female, and 23 had unknown sex. The total number of visits was 

3658, and the clinical diagnoses at these visits were 1103 normal, 1513 MCI, and 1010 AD2 

Of the seven biomarkers considered, only ADAS and RAVLT30 were available at the time of 

download from the ADNI 2/GO dataset. The protocol for these biomarkers is the same in 

ADNI, ADNI 2, and ADNI GO.

2.5. Sampling from the residuals

The analysis of a longitudinal, simultaneously acquired collection of biomarkers of ADNI 

dataset is a complex task for several reasons. First, for each biomarker, the sequences of 

measurements obtained across time point are correlated. Table 1 shows the correlation 

between measurements taken at baseline and at one year after baseline. The correlation is 

larger than 0.7 for all the biomarkers and is as high as 0.98 in case of the volume of the 

hippocampus over all subjects.

Secondly, the structure of the missing data in ADNI is complex. The schedule of visits 

depends on the status (N, MCI, AD) at baseline and is different for different biomarkers3. 

Moreover, the subjects are recruited over a relatively long period; hence the number of 

available measurements at an earlier visit (e.g. baseline) is significantly larger than at a later 

one (e.g. baseline plus 36 months). Table 2 shows the proportion of available measurements 

1Freesurfer version 4.4.0 for longitudinal data http://surfer.nmr.mgh.harvard.edu)
2Note that we used ABETA and TAU data from files UPENNBIOMK, UPENNBIOMK2, UPENNBIOMK3 and UPENNBIOMK4. 
For each subject, we use the latest available file (batch), i.e. if UPENNBIOMK4 data is available for this subject, we use it. Otherwise 
we use UPENNBIOMK3, and so on. For each subject, all his/her ABETA and TAU data always come from the same file (batch).
3See ADNI General Procedures Manual, pages 6, 7, and 8
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relative to the total number of subjects for each of the 7 selected biomarkers and each time-

point.

We now describe the sampling from the residual algorithm which we employ. The key idea 

is to construct a bootstrap distribution of yijk while taking into account its dependence 

structure, which then can be employed for inference and imputation purposes. In particular, 

the residuals εijk are ideally independent and identically distributed (i.i.d.). However, since 

measurements are taken consecutively over time, this is not the case, as Table 1 indicates. 

Thus, we can attempt to filter out temporal dependence among εijk by applying an 

appropriate filter (e.g., an autoregressive model), and the resulting new filtered residuals ηijk 

should be close to the i.i.d. assumption. Hence, given conditional independence of ηijk, we 

can employ the classical bootstrap and sample new realizations of  from the estimated 

empirical probability distribution of ηijk. Substituting in the sampled  into the filter yields 

new bootstrap residuals,  which in turn can be plugged-in into the estimated model (3) 

and the new proxy bootstrap values  are thus obtained. The resulting bootstrap 

distribution of  serves as a proxy to the unknown distribution of yijk, and can be 

employed to assess errors in parameter estimation and imputation of missing values as 

described in the Algorithm 2 below.

In order to assess the quality of the parameter fitting algorithm presented in Alg. 1, we 

generated a large number (M = 40, 000) of simulated datasets by sampling from the 

residuals as follows. First, we estimated all of the parameters in the model using Alg. 1 and 

the ADNI dataset. Second, we computed the residuals εijk from (3). Since these residuals 

showed correlation over time for each biomarker, we fit an autoregressive AR(1) model for 

the residuals of each biomarker. We then repeated the procedure described in Alg. 2 M = 40, 

000 times.

3. Results

3.1. ADPS computed for ADNI subjects

The ADPS was computed for all subject visits in the combined ADNI, ADNI 2, and ADNI 

GO data sets (with minimal exclusions as described in Section 2.4). Results are presented in 

Fig. 1. Overall, Normal subjects (black) have the smallest ADPS, MCI subjects (red) have 

moderate ADPS, and AD subjects (green) have the largest ADPS. Lower ADPS are 

therefore consistent with the normal population and higher ADPS are indicative of increased 

presence of dementia. Those subjects whose clinical status changes from MCI to AD (blue) 

are found mostly between the red and green colors. The estimated sigmoidal behaviors of 

each biomarker are shown in gray.

3.2. Assesment of the quality of the estimation of the inflection point of each biomarker 
curve

The estimator of the parameter ck for biomarker k using the ADNI dataset is denoted , 

where “T” stands for “Target”. Each sampling from the residuals, indexed by m, produces a 

simulated dataset from which an estimator of ck is computed using Alg. 1 and is notated 
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. The histograms for the data  for each biomarker k are 

presented in Fig 2. In comparing k these histograms, be advised that the scale of the 

horizontal axis is not the same for each biomarker. Recall that the parameter ck, the 

inflection point of each sigmoid, records the moment in the disease progression where the 

biomarker k changes the most (is the most dynamic). First, consider the biomarkers HIPPO, 

TAU, ABETA, and RAVLT30. The mean square error for these estimators is small. Indeed, 

the histograms obtained by sampling from the residuals are centered close to the origin with 

a small standard deviation. These results give validity to the choices and the settings of the 

optimization algorithm. Second, in the case of MMSE and CDRSB, some bias is observed 

and the standard deviation is moderated. Finally, in the case of ADAS, the bias as well as the 

standard deviation are larger. Note that the fitted sigmoids for these three biomarkers do not 

level off in the later stages of the disease (see Fig 1), which might explain why the fit is less 

stable (large bootstrap standard deviation). One remedy to stabilize the estimation could be 

to constrain the extremal values, dk and dk + ak. For example, the maximum value for ADAS 

is 70 which could be enforced during the optimization process.

3.3. Ordering of the biomarkers

For each simulation, the parameter ck, i.e. the inflection point of the sigmoid fitted to 

biomarker k, was obtained and the summary of the ordering of the ck values for each of the 

40,000 simulations is presented in Table 3. Clearly, the ordering the most prevalent is as 

follows: RAVLT30, HIPPO, ABETA, TAU, then (CDRSB, MMSE) in no particular order and 

then ADAS. This result is consistent with our results obtained in [5] where the statistical 

method used to assess this ordering, i.e., resampling from the subjects, was different than the 

method used here, i.e, sampling from the residuals. Care should be taken in interpreting this 

result in term of the ordering of the biomarkers. In particular, ABETA and TAU biomarkers 

are not well explained by the model, see Fig. 1. One can visually see that there is a large 

residual variance in the case of these two biomarkers by comparing the spread of the data 

points around the sigmoid curves in grey. As a consequence, we prefer to eliminate these 

biomarkers from our analysis and propose the following ordering of the biomarkers: 

RAVLT30, HIPPO, then (CDRSB and MMSE) in no particular order then ADAS.

4. Discussion

Amyloid concentration in the brain is known to change very early in the disease process [17, 

18]. Why is it then that we do not detect an early change of ABETA? There are several non-

exclusive possible explanations. One is that ABETA is a noisy measurement of the amyloid 

burden, eventually contaminated by one or several physiological covariates. A 

complementary explanation is that there are several paths to disease within the ADNI 

subjects. For example, there might be MCI or even AD subjects who are impaired for 

reasons unrelated to Alzheimer’s (depression, tau only pathologies, vascular dementia). 

Recall that the first assumption in our model is that there is a unique disease progression for 

all the subjects. A violation of this hypothesis would result in a lack of fit for some of the 

biomarkers and could also modify our conclusions about the ordering of the biomarkers.
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The fact that the RAVLT30 biomarker is dynamic early in the disease process is an 

interesting result which deserves further investigations in ADNI. Using data from the 

Canadian Study of Health and Aging, it was found in [16] that the RAVLT was predictive of 

neurodegenerative changes up to 10 years prior to diagnosis Also, early changes in the 

hippocampus volume might occur very early in the disease process while being too subtle to 

be detected with the current protocol and that progress in the acquisition and/or image 

processing technology might reveal these subtleties. Finally, the reader is reminded that the 

results were obtained for the ADNI dataset as of November 4th 2011 and do not necessarily 

extrapolate to a larger or different population.

5. Conclusion

We have presented a validation of a multi-biomarker, data-driven approach to assess time-

dependent changes of biomarkers in AD and to localize subjects on a common scale of 

disease progression over the entire range of progression represented in the ADNI cohort. 

The sampling from the residuals analysis show that the inflection point of the biomarker 

sigmoid curves are well estimated for most biomarkers. Our presented model and 

subsequent validation argue that the following ordering of the biomarkers should be 

considered: RAVLT30, HIPPO, then (CDRSB and MMSE) in no particular order and lastly 

ADAS.
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Algorithm 1

Algorithm for the fitting of the parameters

 1: Inititialize α(0), β(0)

 2: for l = 1 to L do

 3:  for k = 1 to K do

 4:    

 5:    

 6:  end for

 7:  for i = 1 to I do

 8:    

 9:  end for

 10:  α(0) = α(1); β(0) = β(1)

 11: end for

 12: for k = 1 to K do

 13:  if bk < 0 then

 14:    

 15:  end if

 16: end for

 17: for i = 1 to I do

 18:   

 19: end for
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Algorithm 2

Algorithm for sampling from the residuals

 1: Sample ηijk independently from a standard Normal distribution, assuming no missing data;

 2: Compute εijk using the AR(1) model, imputing the values ηijk as residuals;

 3: Compute yijk using the model (3), imputing εijk as residuals;

 4: Determine the missing data for each biomarker with the following sampling procedure: Sample from a 2 
state (not available (NA), not NA) non-homogeneous Markov chain indexed by the successive visits. The 
transition matrix was estimated separately for each status at baseline (N, MCI and AD) and before hand.

 5: Estimate all the parameters from the simulated dataset with missing data obtained at the last step using 

Alg. 1. Notate  the estimated parameter c for biomarker k at iteration m.
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Figure 1. 
The values of seven biomarkers, measured at all visits of all ADNI subjects, are plotted on 

the normalized ADPS. Each connected polyline represents the consecutive visits of a single 

subject, and each line segment is colored according to the subject’s clinical diagnoses 

between visits (see legend). The gray curves are the sigmoid functions representing the fitted 

behavior of each biomarker in the normalized space. (Reproduced from [5])
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Figure 2. 
Distribution of the errors in estimating the parameter c of the sigmoid (see (2)) as function 

of the progression time-line of the disease.
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Table 1

Correlation coefficient for each biomarker between the measurements at baseline and 1 year after baseline

Biomarker Correlation coef. Biomarker Correlation coef.

HIPPO 0.98 ADAS 0.83

MMSE 0.74 TAU 0.93

ABETA 0.94 CDRSB 0.85

RAVLT30 0.8
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